I am trying to zip my dictionary into a panda’s data frame, and do it by the keys that are in the dictionary and not manually:
import pandas as pd
dict = {'A': ['a1', 'a2', 'a3'], 'B': ['b1', 'b2', 'b3']}
columns = list(dict.keys()) # ['A', 'B']
manual_results = list(zip(dict['A'], dict['B'])) # [('a1', 'b1'), ('a2', 'b2'), ('a3', 'b3')]
df = pd.DataFrame(manual_results, columns=columns)
I wish to create the results without the need to explicitly write the name of each key (dict[‘A’], dict[‘B’] etc). Any Ideas?
>Solution :
There is no need to zip it. Pandas can create a dataframe directly from a dict:
import pandas as pd
d = {'A': ['a1', 'a2', 'a3'], 'B': ['b1', 'b2', 'b3']}
df = pd.DataFrame.from_dict(d)
print(df)
A B
0 a1 b1
1 a2 b2
2 a3 b3
reference: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.from_dict.html
Note: You can also orient it the other way (so the dict keys become the row index instead of colums) …
import pandas as pd
d = {'A': ['a1', 'a2', 'a3'], 'B': ['b1', 'b2', 'b3']}
df = pd.DataFrame.from_dict(d,orient='index')
print(df)
0 1 2
A a1 a2 a3
B b1 b2 b3