Pivoting data without column

Starting from an imported df from excel like that:

Code Material Text QTY
A1 X222 Model3 1
A2 4027721 Gruoup1 1
A2 4647273 Gruoup1.1 4
A1 573828 Gruoup1.2 1

I want to create a new pivot table like that:

Code Qty
A1 2
A2 5

I tried with the following command but they do not work:

df.pivot(index='Code', columns='',values='Qty')

df_pivot = df ("Code").Qty([sum, max])

>Solution :

You don’t need pivot but groupby:

out = df.groupby('Code', as_index=False)['QTY'].sum()

# Or

out = df.groupby('Code')['QTY'].agg(['sum', 'max']).reset_index()


>>> out
  Code  sum  max
0   A1    2    1
1   A2    5    4

The equivalent code with pivot_table:

out = (df.pivot_table('QTY', 'Code', aggfunc=['sum', 'max'])
         .droplevel(1, axis=1).reset_index())

Leave a Reply