I have two 3d arrays of shape (N, M, D) and I want to perform an efficient row wise (over N) matrix multiplication such that the resulting array is of shape (N, D, D).

An inefficient code sample showing what I try to achieve is given by:

```
N = 100
M = 10
D = 50
arr1 = np.random.normal(size=(N, M, D))
arr2 = np.random.normal(size=(N, M, D))
result = []
for i in range(N):
result.append(arr1[i].T @ arr2[i])
result = np.array(result)
```

However, this application is quite slow for large N due to the loop. Is there a more efficient way to achieve this computation without using loops? I already tried to find a solution via tensordot and einsum to no avail.

### >Solution :

The vectorization solution is to swap the last two axes of `arr1`

:

```
>>> N, M, D = 2, 3, 4
>>> np.random.seed(0)
>>> arr1 = np.random.normal(size=(N, M, D))
>>> arr2 = np.random.normal(size=(N, M, D))
>>> arr1.transpose(0, 2, 1) @ arr2
array([[[ 6.95815626, 0.38299107, 0.40600482, 0.35990016],
[-0.95421604, -2.83125879, -0.2759683 , -0.38027618],
[ 3.54989101, -0.31274318, 0.14188485, 0.19860495],
[ 3.56319723, -6.36209602, -0.42687188, -0.24932248]],
[[ 0.67081341, -0.08816343, 0.35430089, 0.69962394],
[ 0.0316968 , 0.15129449, -0.51592291, 0.07118177],
[-0.22274906, -0.28955683, -1.78905988, 1.1486345 ],
[ 1.68432706, 1.93915798, 2.25785798, -2.34404577]]])
```

A simple benchmark for the super N:

```
In [225]: arr1.shape
Out[225]: (100000, 10, 50)
In [226]: %%timeit
...: result = []
...: for i in range(N):
...: result.append(arr1[i].T @ arr2[i])
...: result = np.array(result)
...:
...:
12.4 s ± 224 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [227]: %timeit arr1.transpose(0, 2, 1) @ arr2
906 ms ± 26 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
```