For a df
like below, I use pct_change()
to calculate the rolling percentage changes:
price = [np.NaN, 10, 13, np.NaN, np.NaN, 9]
df = pd. DataFrame(price, columns = ['price'])
df
Out[75]:
price
0 NaN
1 10.0
2 13.0
3 NaN
4 NaN
5 9.0
But I get these unexpected results:
df.price.pct_change(periods = 1, fill_method='bfill')
Out[76]:
0 NaN
1 0.000000
2 0.300000
3 -0.307692
4 0.000000
5 0.000000
Name: price, dtype: float64
df.price.pct_change(periods = 1, fill_method='pad')
Out[77]:
0 NaN
1 NaN
2 0.300000
3 0.000000
4 0.000000
5 -0.307692
Name: price, dtype: float64
df.price.pct_change(periods = 1, fill_method='ffill')
Out[78]:
0 NaN
1 NaN
2 0.300000
3 0.000000
4 0.000000
5 -0.307692
Name: price, dtype: float64
I hope that while calculating with NaN
s, the results will be NaN
s instead of being filled forward or backward and then calculated.
May I ask how to achieve it? Thanks.
The expected result:
0 NaN
1 NaN
2 0.300000
3 NaN
4 NaN
5 NaN
Name: price, dtype: float64
Reference:
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.pct_change.html
>Solution :
Maybe you can compute the pct manually with diff
and shift
:
period = 1
pct = df.price.diff().div(df.price.shift(period))
print(pct)
# Output
0 NaN
1 NaN
2 0.3
3 NaN
4 NaN
5 NaN
Name: price, dtype: float64
Update: you can pass fill_method=None
period = 1
pct = df.price.pct_change(periods=period, fill_method=None)
print(pct)
# Output
0 NaN
1 NaN
2 0.3
3 NaN
4 NaN
5 NaN
Name: price, dtype: float64