Consider a dataframe like pivoted
, where replicates of some data are given as lists in a dataframe:
d = {'Compound': ['A', 'A', 'A', 'B', 'B', 'B', 'C', 'C', 'C', 'C'],
'Conc': [1, 0.5, 0.1, 1, 0.5, 0.1, 2, 1, 0.5, 0.1],
'Data': [[100, 90, 80], [50, 40, 30], [10, 9.7, 8],
[20, 15, 10], [3, 4, 5, 6], [100, 110, 80],
[30, 40, 50, 20], [10, 5, 9, 3], [2, 1, 2, 2], [1, 1, 0]]}
df = pd.DataFrame(data=d)
pivoted = df.pivot(index='Conc', columns='Compound', values='Data')
This df can be written to an excel file as such:
with pd.ExcelWriter('output.xlsx') as writer:
pivoted.to_excel(writer, sheet_name='Sheet1', index_label='Conc')
How can this instead be written where replicate data are given in side-by-side cells? Desired excel file:
>Solution :
Then you need to pivot your data in a slightly different way, first explode
the Data column, and deduplicate with groupby.cumcount
:
(df.explode('Data')
.assign(n=lambda d: d.groupby(level=0).cumcount())
.pivot(index='Conc', columns=['Compound', 'n'], values='Data')
.droplevel('n', axis=1).rename_axis(columns=None)
)
Output:
A A A B B B B C C C C
Conc
0.1 10 9.7 8 100 110 80 NaN 1 1 0 NaN
0.5 50 40 30 3 4 5 6 2 1 2 2
1.0 100 90 80 20 15 10 NaN 10 5 9 3
2.0 NaN NaN NaN NaN NaN NaN NaN 30 40 50 20