This is my dataframe:
df = pd.DataFrame({'a': [10, 11, 20, 80, 1, 22], 'b':['x', np.nan, 'x', np.nan, np.nan, 'x']})
And this is the output that I want:
a b c
0 10 x NaN
1 11 NaN NaN
2 20 x 100
3 80 NaN NaN
4 1 NaN NaN
5 22 x 10
I want to create column c
which is the perecent change of values of column a
that are not NaN
in b
.
For example 100 in c
is the result of percent change of 20 and 10.
I have tried to create a new dataframe by using df.loc[df.b.notna(), 'a'].values
but I still cannot get the result that I want.
>Solution :
You can calculate the pct_change()
after selecting the rows from a
corresponds to the not null value from b
.
df['c'] = df.loc[df['b'].eq('x'), 'a'].pct_change().mul(100)
# or
df['c'] = df.loc[df['b'].notnull(), 'a'].pct_change().mul(100)
print(df)
a b c
0 10 x NaN
1 11 NaN NaN
2 20 x 100.0
3 80 NaN NaN
4 1 NaN NaN
5 22 x 10.0