Javascript to dynamically select based on another query

Advertisements I am working with a svg element as following const src = [{ “Name”: “Australia”, “Year”: 1997, “Value”: 15.540540540540499 }, { “Name”: “Australia”, “Year”: 1998, “Value”: 15.540540540540499 }, { “Name”: “Australia”, “Year”: 1999, “Value”: 22.4489795918367 }, { “Name”: “Brunei”, “Year”: 1998, “Value”: 6.4516129032258096 }, { “Name”: “Brunei”, “Year”: 2017, “Value”: 9.0909090909090899 }, { “Name”:… Read More Javascript to dynamically select based on another query

Change background color of combined plots in ggpubr::ggarrange

Advertisements I can’t figure out why the bottom corners background is white, while the rest of the plot is grey. Is there anyway I can change the bottom corners color to the same background as the rest of the plot? The code im using for each plot is: HP_specifikationer_model1 <- ggplot(Svar_spec_data)+geom_hline(yintercept=0) geom_line(aes(y=HP1, x=kvartaler, color =… Read More Change background color of combined plots in ggpubr::ggarrange

check each object, return true when the first condition is met, else return false

Advertisements I have a method that works fine. This is how it looks. private ArrayList<Car> carsInStore ; //in car class have setter/getter/quals/Constructor. public boolean checkIfcarInStore(Car c) { for (Car car : carsInStore) { if(car.equals(c)){ return true; } }} I wanna switch this to Lambda. but I am not sure how fill in the if (condition)… Read More check each object, return true when the first condition is met, else return false

BottomSheetScaffold is overriding the background color of its parent

Advertisements I’m trying out BottomSheetScaffold and I just found a strange behavior (maybe a bug) when using it. I put it inside a Box { } that has a cyan background color: composable(route = "my_route") { Box( modifier = Modifier .fillMaxSize() .background(color = Color.Cyan), ) { val coroutineScope = rememberCoroutineScope() val bottomSheetScaffoldState = rememberBottomSheetScaffoldState() BottomSheetScaffold(… Read More BottomSheetScaffold is overriding the background color of its parent

How to create a dictionary with the unique items of a list as key and the count of unique items as value?

Advertisements I know that if I have a dictionary filled with with x = {unique : count} then I can use prop_dict = dict((k, round(v/sum(x.values()),2)) for k,v in x.items()), but I do not know how to get there from an array/list. Here is some sample data: arr = [0., 137., 3., 1., 1., 5., 2.,… Read More How to create a dictionary with the unique items of a list as key and the count of unique items as value?

Show small window with image from CLI

Advertisements What the problem in this code i’ve written ? using System; using System.Windows.Forms; public class stfu { public static void Main() { Console.WriteLine("Hello Toxic world!"); var f = new Form(); f.FormBorderStyle = FormBorderStyle.None; f.Controls.Add(new PictureBox() { ImageLocation = @"image.png",Dock = DockStyle.Fill}); f.Show(); Console.ReadLine(); } } form not responding. . . >Solution : You need… Read More Show small window with image from CLI

rank for nan values based on group

Advertisements I have dataframe with column d1 and now i am trying calculate ‘out’ column after ranking that column when there in ‘nan’ value with in a column. data_input = {‘Name’:[‘Renault’, ‘Renault’, ‘Renault’, ‘Renault’,’Renault’,’Renault’,’Renault’,’Renault’,’Renault’,’Renault’,’Renault’,’Renault’,’Renault’,’Renault’], ‘type’:[‘Duster’, ‘Duster’, ‘Duster’,’Duster’,’Duster’,’Duster’,’Duster’,’Triber’,’Triber’,’Triber’,’Triber’,’Triber’,’Triber’,’Triber’], ‘d1’:[‘nan’,’10’,’10’,’10’,’nan’,’nan’,’20’,’20’,’nan’,’nan’,’30’,’30’,’30’,’nan’]} df_input = pd.DataFrame(data_input) data_out = {‘Name’:[‘Renault’, ‘Renault’, ‘Renault’, ‘Renault’,’Renault’,’Renault’,’Renault’,’Renault’,’Renault’,’Renault’,’Renault’,’Renault’,’Renault’,’Renault’], ‘type’:[‘Duster’, ‘Duster’, ‘Duster’,’Duster’,’Duster’,’Duster’,’Duster’,’Triber’,’Triber’,’Triber’,’Triber’,’Triber’,’Triber’,’Triber’], ‘d1’:[‘nan’,’10’,’10’,’10’,’nan’,’nan’,’20’,’20’,’nan’,’nan’,’30’,’30’,’30’,’nan’], ‘out’:[1,np.NaN,np.NaN,np.NaN,2,2,np.NaN,np.NaN,1,1,np.NaN,np.NaN,np.NaN,2]} df_out = pd.DataFrame(data_out)… Read More rank for nan values based on group